Comprehensive study on low-frequency noise characteristics in surface channel SOI CMOSFETs and device design optimization for RF ICs

Low-frequency (LF) noise, a key figure-of-merit to evaluate device technology for RF systems on a chip, is a significant obstacle for CMOS technology, especially for partially depleted (PD) silicon-on-insulator (SOI) CMOS due to the well-known kink-induced noise overshoot. While the dc kink effect c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2001-07, Vol.48 (7), p.1428-1437
Hauptverfasser: Ying-Che Tseng, Huang, W.M., Mendicino, M., Monk, D.J., Welch, P.J., Woo, J.C.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-frequency (LF) noise, a key figure-of-merit to evaluate device technology for RF systems on a chip, is a significant obstacle for CMOS technology, especially for partially depleted (PD) silicon-on-insulator (SOI) CMOS due to the well-known kink-induced noise overshoot. While the dc kink effect can be suppressed by either using body contact technologies or shifting toward fully depleted (FD) operation, the noise overshoot phenomena still resides at high frequency for either FD SOI or poor body-tied (BT) SOI CMOSFETs. In this paper, floating body-induced excess noise in SOI CMOS technology is addressed, including the impact from floating body effect, pre-dc kink operation, and gate overdrive, followed by the proposal of a universal LF excess noise model. As the physical mechanism behind excess noise is identified, this paper concludes with the suggestion of a device design methodology to optimize LF noise in SOI CMOSFET technology.
ISSN:0018-9383
1557-9646
DOI:10.1109/16.930662