Simulation of cold-test parameters and RF output power for a coupled-cavity traveling-wave tube

Procedures have been developed which enable the accurate computation of the cold-test (absence of an electron beam) parameters and RF output power for the slow-wave circuits of coupled-cavity traveling-wave tubes (TWT's). The cold-test parameters, which consist of RF phase shift per cavity, imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 1995-11, Vol.42 (11), p.2015-2020
Hauptverfasser: Wilson, J.D., Kory, C.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Procedures have been developed which enable the accurate computation of the cold-test (absence of an electron beam) parameters and RF output power for the slow-wave circuits of coupled-cavity traveling-wave tubes (TWT's). The cold-test parameters, which consist of RF phase shift per cavity, impedance, and attenuation, are computed with the three-dimensional electromagnetic simulation code MAFIA and compared to experimental data for an existing V-band (59-64 GHz) coupled-cavity TWT. When simulated in cylindrical coordinates, the absolute average differences from experiment are only 0.3% for phase shift and 2.4% for impedance. Using the cold-test parameters calculated with MAFIA as input, the NASA Coupled-Cavity TWT Code is used to simulate the saturated RF output power of the TWT across the V-band frequency range. Taking into account the output window and coupler loss, the agreement with experiment is very good from 60-64 GHz, with the average absolute percentage difference between simulated and measured power only 3.8%. This demonstrates that the saturated RF output power of a coupled cavity TWT can be accurately simulated using cold-test parameters determined with a three dimensional electromagnetic simulation code.< >
ISSN:0018-9383
1557-9646
DOI:10.1109/16.469412