Effects of hot carrier induced interface state generation in submicron LDD MOSFET's
A two-dimensional numerical simulation including a new interface state generation model has been developed to study the performance variation of a LDD MOSFET after a dc voltage stress. The spatial distribution of hot carrier induced interface states is calculated with a breaking silicon-hydrogen bon...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 1994-09, Vol.41 (9), p.1618-1622 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A two-dimensional numerical simulation including a new interface state generation model has been developed to study the performance variation of a LDD MOSFET after a dc voltage stress. The spatial distribution of hot carrier induced interface states is calculated with a breaking silicon-hydrogen bond model. Mobility degradation and reduction of conduction charge due to interface traps are considered. A 0.6 /spl mu/m LDD MOSFET was fabricated. The drain current degradation and the substrate current variation after a stress were characterized to compare the simulation. A reduction of the substrate current at V/sub g//spl sime/0.5 V/sub d/ in a stressed device was observed from both the measurement and the simulation. Our study reveals that the reduction is attributed to a distance between a maximum channel electric field and generated interface states.< > |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/16.310115 |