Serial array time slot interchangers and optical implementations

We consider time slot interchangers (TSIs) which are built from 2/spl times/2 exchange switches and delays and which are useful for time division multiplexed (TDM) systems in telecommunications and pipelined systems such as time multiplexed optical multiprocessors. We formulate a general method for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1994-11, Vol.43 (11), p.1309-1318
Hauptverfasser: Jordan, H.F., Lee, D., Lee, K.Y., Ramanan, S.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider time slot interchangers (TSIs) which are built from 2/spl times/2 exchange switches and delays and which are useful for time division multiplexed (TDM) systems in telecommunications and pipelined systems such as time multiplexed optical multiprocessors. We formulate a general method for constructing TSIs based on multistage interconnection networks in the space domain via space-to-time mapping. Two types of TSIs, time slot permuters and time slot sorters, are considered. We review the time slot permuter based on the Benes network, and obtain the /spl Lambdaspl tilde/ time slot permuter based on the bit-controlled, self-routing /spl Lambda/ permutation network. The time slot sorter, S/sub N/, is obtained from the Batcher spatial sorting network. The generalized Lambda time slot permuter /spl Lambdasub Nsup q/ is obtained, in an algorithmic approach, by combining the idea of the /spl Lambdaspl tilde/ time slot permuter and Q-way bitonic decomposition (Q=2/sup q/). The numbers of switches, control complexities, and frame delays of these architectures are compared, and the problem of crosstalk in optical implementation is discussed. It is shown that control complexity can be traded against the number of switches.< >
ISSN:0018-9340
1557-9956
DOI:10.1109/12.324563