Applying features of IEEE 754 to sign/logarithm arithmetic
Various features found in standard floating point arithmetic (IEEE 754) are examined in light of their appropriateness for sign/logarithm arithmetic. The emphasis is on a 32-b word size comparable to IEEE 754 single precision, although other word sizes are possible. A multilayer sign/logarithm forma...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 1992-08, Vol.41 (8), p.1040-1050 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Various features found in standard floating point arithmetic (IEEE 754) are examined in light of their appropriateness for sign/logarithm arithmetic. The emphasis is on a 32-b word size comparable to IEEE 754 single precision, although other word sizes are possible. A multilayer sign/logarithm format is considered. The lowest layer, similar to previous implementations, would provide only normalized representations but would not provide representations for zero, denormalized values, infinities, and NaNs. The highest layer would provide most of the features found in IEEE 754, including zeros, denormalized values, infinities, and NaNs. Novel algorithms for implementing logarithmic denormalized arithmetic are presented. Simulation results show that the error characteristics of the proposed logarithmic denormalized arithmetic algorithms are similar to those of the denormalized floating point arithmetic in IEEE 754.< > |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/12.156547 |