Compositional and experimental investigation of the effect of reactor temperature on softwood and hardwood pyrolysis

Purpose This study aims to investigate the effect of reactor temperature on softwood and hardwood pyrolysis. Experiments are performed at six temperature levels ranging from 300 to 800°C under N2 atmosphere. The weights of char, tar and gas yields produced were measured and recorded in percentage of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of engineering 2018-01, Vol.15 (1), p.21-26
Hauptverfasser: Oyebanji, Joseph Adewumi, Oyedepo, Sunday Olayinka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose This study aims to investigate the effect of reactor temperature on softwood and hardwood pyrolysis. Experiments are performed at six temperature levels ranging from 300 to 800°C under N2 atmosphere. The weights of char, tar and gas yields produced were measured and recorded in percentage of initial weight of the pyrolyzed samples. Results of the study showed that hardwood produces maximum char, tar and gas yields of 41.02 per cent at 300°C,44.10 per cent at 300°C and 56.86 per cent at 800°C, respectively, whereas softwood produces maximum yields of 30.10 per cent at 300°C, 28.25 per cent at 300°C and 68.73 per cent at 800°C, respectively. Proximate analysis shows that volatile matter, fixed carbon, ash content and moisture content of hardwood are 74.83, 14.28, 2.81 and 8.08 per cent, respectively, and that of softwood are 79.76, 12.65, 0.98 and 6.61 per cent, respectively. Result of the elemental analysis results shows that the carbon, hydrogen, nitrogen, oxygen and sulphur contents for hardwood are 52.20, 6.45, 0.68, 39.64 and 1.03 per cent, respectively, and that of softwood are 45.95, 4.57, 0.56, 48.13 and 0.79 per cent, respectively. The higher heating value of hardwood and softwood are 21.76 and 16.50 kJ/g respectively. This study shows that char and tar yields decrease with increase pyrolysis temperature, whereas gas yield increases as pyrolysis temperature increases for the wood samples considered. At all temperatures considered in this study, gas yields are higher than tar and char yields for softwood, whereas for hardwood, tar yield decreases with increase in temperature with accompanying increase in gas yield. Design/methodology/approach Experiments are performed at six temperature levels ranging from 300 to 800°C under N2 atmosphere. Findings At all temperatures considered in this study, gas yields are higher than tar and char yields for softwood, whereas for hardwood, tar yield decreases with increase in temperature with accompanying increase in gas yield. Originality/value Results of the study showed that hardwood produces maximum char, tar and gas yields of 41.02 per cent at 300°C,44.10 per cent at 300°C and 56.86 per cent at 800°C, respectively, whereas softwood produces maximum yields of 30.10 per cent at 300°C, 28.25 per cent at 300°C and 68.73 per cent at 800°C, respectively.
ISSN:1708-5284
2515-8082
DOI:10.1108/WJE-03-2017-0053