Cold spray micro-defects and post-treatment technologies: a review

Purpose The deposition of particles onto a substrate during the cold spraying (CS) process relies on severe plastic deformation, so there are various micro-defects induced by insufficient deformation and severe crushing. To solve the problems, many post-treat techniques have been used to improving t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid prototyping journal 2022-01, Vol.28 (2), p.330-357
Hauptverfasser: Zhizhong, Wang, Chao, Han, Huang, Guosheng, Bin, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The deposition of particles onto a substrate during the cold spraying (CS) process relies on severe plastic deformation, so there are various micro-defects induced by insufficient deformation and severe crushing. To solve the problems, many post-treat techniques have been used to improving the quality by eliminating the micro-defects. This paper aims to help scholars and engineers in this field a better and systematic understand of CS technology by summarizing the post-treatment technologies that have been investigated recently years. Design/methodology/approach This review summarizes the types of micro-defects and introduces the effect of micro-defects on the properties of CS coating/additive manufactured, illustrates the post-treatment technologies and its effect on the microstructure and performances, and finally outlooks the future development trends of post-treatments for CS. Findings There are significant discoveries in post-treatment technology to change the performance of cold spray deposits. There are also many limitations for post-treatment methods, including improved performance and limitations of use. Thus, there is still a strong requirement for further improvement. Hybrid post-treatment may be a more ideal method, as it can eliminate more defects than a single method. The proposed ultrasonic impact treatment could be an alternative method, as it can densify and flatten the CS deposits. Originality/value It is the first time to reveal the influence factors on the performances of CS deposits from the perspective of microdefects, and proposed corresponding well targeted post-treatment methods, which is more instructive for improving the performances of CS deposits.
ISSN:1355-2546
1758-7670
1355-2546
DOI:10.1108/RPJ-12-2020-0302