Physical and chemical indexes of synthetic base oils based on a wavelet neural network and genetic algorithm

Purpose The purpose of this paper is to use the wavelet neural network and genetic algorithm to study the effects of polyalphaolefin, TMP108 and OCP0016 on the kinematic viscosity, viscosity index and pour point of lubricating oil. Design/methodology/approach Wavelet neural network is used to train...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial lubrication and tribology 2020-01, Vol.72 (1), p.116-121
Hauptverfasser: Wang, Guomin, Wu, Yuanyuan, Jiang, Haifu, Zhang, Yanjie, Quan, Jiarong, Huang, Fuchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The purpose of this paper is to use the wavelet neural network and genetic algorithm to study the effects of polyalphaolefin, TMP108 and OCP0016 on the kinematic viscosity, viscosity index and pour point of lubricating oil. Design/methodology/approach Wavelet neural network is used to train the known samples, test the unknown samples and compare the obtained results with those obtained with a traditional empirical formula. Findings It is found that the wavelet neural network prediction value is closer to the experimental value than the traditional empirical formula calculation value. Originality/value The results show that the wavelet neural network can be used to study the physical and chemical indexes of lubricating oil.
ISSN:0036-8792
1758-5775
DOI:10.1108/ILT-03-2019-0101