Numerical analysis of flow and forced convection heat transfer of non-Newtonian fluid in a pipe based on fractional constitutive model

Purpose This paper aims to use a fractional constitutive model with a nonlocal velocity gradient for replacing the nonlinear constitutive model to characterize its complex rheological behavior, where non-linear characteristics exist, for example, the inherent viscous behavior of the crude oil. The f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical methods for heat & fluid flow 2021-08, Vol.31 (8), p.2680-2697
Hauptverfasser: Chang, Ailian, Sun, HongGuang, Vafai, K., Kosari, Erfan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose This paper aims to use a fractional constitutive model with a nonlocal velocity gradient for replacing the nonlinear constitutive model to characterize its complex rheological behavior, where non-linear characteristics exist, for example, the inherent viscous behavior of the crude oil. The feasibility and flexibility of the fractional model are tested via a case study of non-Newtonian fluid. The finite element method is non-Newtonian used to numerically solve both momentum equation and energy equation to describe the fluid flow and convection heat transfer process. Design/methodology/approach This paper provides a comprehensive theoretical and numerical study of flow and heat transfer of non-Newtonian fluids in a pipe based on the fractional constitutive model. Contrary to fractional order a, the rheological property of non-Newtonian fluid changes from shear-thinning to shear-thickening with the increase of power-law index n, therefore the flow and heat transfer are hindered to some extent. Findings This paper discusses two dimensionless parameters on flow regime and thermal patterns, including Reynolds number (Re) and Nusselt number (Nu) in evaluating the flow rate and heat transfer rate. Analysis results show that the viscosity of the non-Newtonian fluid decreases with the rheological index (order α) increasing. While large fractional (order α) corresponds to the enhancement of heat transfer capacity. Research limitations/implications First, it is observed that the increase of the Re results in an increase of the local Nusselt number (Nul). It means the heat transfer enhancement ratio increases with Re. Meanwhile, the increasement of the Nul indicating the enhancement in the heat transfer coefficient, produces a higher speed flow of crude oil. Originality/value This study presents a new numerical investigation on characteristics of steady-state pipe flow and forced convection heat transfer by using a fractional constitutive model. The influences of various non-dimensional characteristic parameters of fluid on the velocity and temperature fields are analyzed in detail.
ISSN:0961-5539
0961-5539
1758-6585
DOI:10.1108/HFF-10-2020-0637