A model of image retrieval based on KD-Tree Random Forest
PurposeThe problem of image retrieval and image description exists in various fields. In this paper, a model of content-based image retrieval and image content extraction based on the KD-Tree structure was proposed.Design/methodology/approachA Random Forest structure was built to classify the object...
Gespeichert in:
Veröffentlicht in: | Data technologies and applications 2023-10, Vol.57 (4), p.514-536 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PurposeThe problem of image retrieval and image description exists in various fields. In this paper, a model of content-based image retrieval and image content extraction based on the KD-Tree structure was proposed.Design/methodology/approachA Random Forest structure was built to classify the objects on each image on the basis of the balanced multibranch KD-Tree structure. From that purpose, a KD-Tree structure was generated by the Random Forest to retrieve a set of similar images for an input image. A KD-Tree structure is applied to determine a relationship word at leaves to extract the relationship between objects on an input image. An input image content is described based on class names and relationships between objects.FindingsA model of image retrieval and image content extraction was proposed based on the proposed theoretical basis; simultaneously, the experiment was built on multi-object image datasets including Microsoft COCO and Flickr with an average image retrieval precision of 0.9028 and 0.9163, respectively. The experimental results were compared with those of other works on the same image dataset to demonstrate the effectiveness of the proposed method.Originality/valueA balanced multibranch KD-Tree structure was built to apply to relationship classification on the basis of the original KD-Tree structure. Then, KD-Tree Random Forest was built to improve the classifier performance and retrieve a set of similar images for an input image. Concurrently, the image content was described in the process of combining class names and relationships between objects. |
---|---|
ISSN: | 2514-9288 2514-9318 2514-9288 |
DOI: | 10.1108/DTA-06-2022-0247 |