A parallel multi-fidelity optimization approach in induction hardening

Purpose Reliable modeling of induction hardening requires a multi-physical approach, which makes it time-consuming. In designing an induction hardening system, combining such model with an optimization technique allows managing a high number of design variables. However, this could lead to a tremend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compel 2020-03, Vol.39 (1), p.133-143
Hauptverfasser: Baldan, Marco, Nikanorov, Alexander, Nacke, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Reliable modeling of induction hardening requires a multi-physical approach, which makes it time-consuming. In designing an induction hardening system, combining such model with an optimization technique allows managing a high number of design variables. However, this could lead to a tremendous overall computational cost. This paper aims to reduce the computational time of an optimal design problem by making use of multi-fidelity modeling and parallel computing. Design/methodology/approach In the multi-fidelity framework, the “high-fidelity” model couples the electromagnetic, thermal and metallurgical fields. It predicts the phase transformations during both the heating and cooling stages. The “low-fidelity” model is instead limited to the heating step. Its inaccuracy is counterbalanced by its cheapness, which makes it suitable for exploring the design space in optimization. Then, the use of co-Kriging allows merging information from different fidelity models and predicting good design candidates. Field evaluations of both models occur in parallel. Findings In the design of an induction heating system, the synergy between the “high-fidelity” and “low-fidelity” model, together with use of surrogates and parallel computing could reduce up to one order of magnitude the overall computational cost. Practical implications On one hand, multi-physical modeling of induction hardening implies a better understanding of the process, resulting in further potential process improvements. On the other hand, the optimization technique could be applied to many other computationally intensive real-life problems. Originality/value This paper highlights how parallel multi-fidelity optimization could be used in designing an induction hardening system.
ISSN:0332-1649
2054-5606
DOI:10.1108/COMPEL-05-2019-0221