Computational issues arising in multidimensional elliptic inverse problems: the inverse problem of electrocardiography

We compare a recently proposed generalized eigensystem approach and a new modified generalized eigensystem approach to more widely used truncated singular value decomposition and zero-order Tikhonov regularization for solving multidimensional elliptic inverse problems. As a test case, we use a finit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering computations 1995-04, Vol.12 (4), p.343-356
Hauptverfasser: Olson, Lorraine G., Throne, Robert D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compare a recently proposed generalized eigensystem approach and a new modified generalized eigensystem approach to more widely used truncated singular value decomposition and zero-order Tikhonov regularization for solving multidimensional elliptic inverse problems. As a test case, we use a finite element representation of a homogeneous eccentric spheres model of the inverse problem of electrocardiography. Special attention is paid to numerical issues of accuracy, convergence, and robustness. While the new generalized eigensystem methods are substantially more demanding computationally, they exhibit improved accuracy and convergence compared with widely used methods and offer substantially better robustness.
ISSN:0264-4401
1758-7077
DOI:10.1108/02644409510799631