Structure reinvestigation of α-, β- and γ-In 2 S 3

Semiconducting indium sulfide (In 2 S 3 ) has recently attracted considerable attention as a buffer material in the field of thin film photovoltaics. Compared with this growing interest, however, detailed characterizations of the crystal structure of this material are rather scarce and controversial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica Section B, Structural science, crystal engineering and materials Structural science, crystal engineering and materials, 2016-06, Vol.72 (3), p.410-415
Hauptverfasser: Pistor, Paul, Merino Álvarez, Jose M., León, Máximo, di Michiel, Marco, Schorr, Susan, Klenk, Reiner, Lehmann, Sebastian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiconducting indium sulfide (In 2 S 3 ) has recently attracted considerable attention as a buffer material in the field of thin film photovoltaics. Compared with this growing interest, however, detailed characterizations of the crystal structure of this material are rather scarce and controversial. In order to close this gap, we have carried out a reinvestigation of the crystal structure of this material with an in situ X-ray diffraction study as a function of temperature using monochromatic synchrotron radiation. For the purpose of this study, high quality polycrystalline In 2 S 3 material with nominally stoichiometric composition was synthesized at high temperatures. We found three modifications of In 2 S 3 in the temperature range between 300 and 1300 K, with structural phase transitions at temperatures of 717 K and above 1049 K. By Rietveld refinement we extracted the crystal structure data and the temperature coefficients of the lattice constants for all three phases, including a high-temperature trigonal γ-In 2 S 3 modification.
ISSN:2052-5206
2052-5206
DOI:10.1107/S2052520616007058