Structure and stability of BaTiSi 2 O 7
Due to their optical, photo-luminescence (PL), and afterglow properties, barium titanosilicates are compounds of great interest for functional materials and light-emitting devices. Among them, BaTiSi 2 O 7 (BTS2) is certainly one of the most intriguing; it displays peculiar properties ( e.g. PL oran...
Gespeichert in:
Veröffentlicht in: | Acta crystallographica Section B, Structural science, crystal engineering and materials Structural science, crystal engineering and materials, 2015-04, Vol.71 (2), p.153-163 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to their optical, photo-luminescence (PL), and afterglow properties, barium titanosilicates are compounds of great interest for functional materials and light-emitting devices. Among them, BaTiSi 2 O 7 (BTS2) is certainly one of the most intriguing; it displays peculiar properties ( e.g. PL orange emission) whose exhaustive explanation has been hampered to date by the lack of a structure model. In this work, BTS2 and the related compound BaTiSi 4 O 11 (BTS4) were synthesized through conventional solid-state reaction methods. BTS2 invariably shows complex twinning patterns. Thus, its structure solution and Rietveld structure refinement were attempted using synchrotron powder diffraction. BTS2 was found to be an intergrowth of monoclinic and triclinic crystals. The monoclinic phase has the space group P 2 1 / n and unit cell a = 7.9836 (3), b = 10.0084 (4), c = 7.4795 (3) Å, and β = 100.321 (3)°, whereas the triclinic phase has the space group P\bar 1 and unit cell a = 7.99385 (4), b = 10.01017 (5), c = 7.47514 (3) Å, α = 90.084 (8), β = 100.368 (8) and γ = 89.937 (9)°. These lattices can be seen as a distortion of that of tetragonal synthetic β-BaVSi 2 O 7 with Ti in place of V. The structure models obtained from this study confirm the presence of fivefold coordinated Ti atoms in a distorted pyramidal configuration. The proposed solution supports existing theories for the explanation of the PL orange colour in BTS2. |
---|---|
ISSN: | 2052-5206 2052-5206 |
DOI: | 10.1107/S2052520615002942 |