The identification of selected components in electron density maps of prokaryotic ribosomes at 7 Å resolution
Crystals of small and large ribosomal subunits from thermophilic and halophilic bacteria, diffracting to 3 Å, are being subjected to structural analysis with synchrotron radiation. The bright beam necessary for detecting and collecting the diffraction at the higher‐resolution shell causes significan...
Gespeichert in:
Veröffentlicht in: | Journal of synchrotron radiation 1999-07, Vol.6 (4), p.928-941 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Crystals of small and large ribosomal subunits from thermophilic and halophilic bacteria, diffracting to 3 Å, are being subjected to structural analysis with synchrotron radiation. The bright beam necessary for detecting and collecting the diffraction at the higher‐resolution shell causes significant decay even at 25 K. Nevertheless, data collected from native and heavy‐atom‐derivatized crystals led to the construction of electron density maps of both ribosomal subunits, showing recognizable morphologies and internal features similar to those observed by EM reconstructions of the corresponding ribosomal particle. The main features of these maps include elongated dense regions traceable as well separated RNA duplexes or single strands. Also seen are globular patches of lower density, readily distinguishable from the above, in which folds observed by NMR or crystallography in isolated ribosomal proteins at atomic resolution were detected. The intercomponents contacts identified so far reveal diverse modes of recognition. Metal clusters, attached at selected sites on the particles, are being exploited to facilitate unbiased map interpretation. In this way, two surface proteins were located and several surface RNA strands were targeted. |
---|---|
ISSN: | 1600-5775 0909-0495 1600-5775 |
DOI: | 10.1107/S0909049599006664 |