A unified formulation of the construction of variational principles

The use of variational principles as a calculational tool is reviewed, with special emphasis on methods for constructing such principles. In particular, it is shown that for a very wide class of problems it is possible to construct a variational principle (VP) for just about any given quantity Q of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rev. Mod. Phys.; (United States) 1983-07, Vol.55 (3), p.725-774
Hauptverfasser: Gerjuoy, E., Rau, A. R. P., Spruch, Larry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of variational principles as a calculational tool is reviewed, with special emphasis on methods for constructing such principles. In particular, it is shown that for a very wide class of problems it is possible to construct a variational principle (VP) for just about any given quantity Q of interest, by routine procedures which do not require the exercise of ingenuity; the resultant VP will yield an estimate of Q correct to second order whenever the quantities appearing in the VP are known to first order. The only significant requirement for application of the routine procedures is that the entities which enter into the definition of Q be uniquely specified by a given set of equations; the equations may involve difference or differential or integral operators, they may be homogeneous or inhomogeneous, linear or nonlinear, self-adjoint or not, and they may or may not represent time-reversible systems. No numerical calculations are presented, but procedures for the construction of VP's are illustrated for numerous quantities Q of physical interest, particularly those Q arising in quantum-mechanical scattering and transition probability calculations. For pedagogical purposes VP's are also derived for several problems in classical and (simple) mathematical physics which the authors hope will prove instructive and perhaps even amusing. The quantum-mechanical quantities Q whose VP's are examined include various matrix elements and the quantum-mechanical eigenfunctions themselves. Topics examined include some points which have not always been appreciated in the literature, such as the necessity for properly specifying the phase when complex eigenfunctions are involved, and the importance of avoiding, wherever possible, formulations requiring the inversion of singular operators.
ISSN:0034-6861
DOI:10.1103/RevModPhys.55.725