Quantum Mechanical Time-Delay Matrix in Chaotic Scattering
We calculate the probability distribution of the matrix Q=-i{h_bar}S{sup -1}{partial_derivative}S/{partial_derivative}E for a chaotic system with scattering matrix S at energy E . The eigenvalues {tau}{sub j} of Q are the so-called proper delay times, introduced by Wigner and Smith to describe the t...
Gespeichert in:
Veröffentlicht in: | Physical Review Letters 1997-06, Vol.78 (25), p.4737-4740 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We calculate the probability distribution of the matrix Q=-i{h_bar}S{sup -1}{partial_derivative}S/{partial_derivative}E for a chaotic system with scattering matrix S at energy E . The eigenvalues {tau}{sub j} of Q are the so-called proper delay times, introduced by Wigner and Smith to describe the time dependence of a scattering process. The distribution of the inverse delay times turns out to be given by the Laguerre ensemble from random-matrix theory. {copyright} {ital 1997} {ital The American Physical Society} |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.78.4737 |