Quantum Mechanical Time-Delay Matrix in Chaotic Scattering

We calculate the probability distribution of the matrix Q=-i{h_bar}S{sup -1}{partial_derivative}S/{partial_derivative}E for a chaotic system with scattering matrix S at energy E . The eigenvalues {tau}{sub j} of Q are the so-called proper delay times, introduced by Wigner and Smith to describe the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review Letters 1997-06, Vol.78 (25), p.4737-4740
Hauptverfasser: Brouwer, P. W., Frahm, K. M., Beenakker, C. W. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We calculate the probability distribution of the matrix Q=-i{h_bar}S{sup -1}{partial_derivative}S/{partial_derivative}E for a chaotic system with scattering matrix S at energy E . The eigenvalues {tau}{sub j} of Q are the so-called proper delay times, introduced by Wigner and Smith to describe the time dependence of a scattering process. The distribution of the inverse delay times turns out to be given by the Laguerre ensemble from random-matrix theory. {copyright} {ital 1997} {ital The American Physical Society}
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.78.4737