Estimating Granger causality from fourier and wavelet transforms of time series data

Experiments in many fields of science and engineering yield data in the form of time series. The Fourier and wavelet transform-based nonparametric methods are used widely to study the spectral characteristics of these time series data. Here, we extend the framework of nonparametric spectral methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2008-01, Vol.100 (1), p.018701, Article 018701
Hauptverfasser: Dhamala, Mukeshwar, Rangarajan, Govindan, Ding, Mingzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experiments in many fields of science and engineering yield data in the form of time series. The Fourier and wavelet transform-based nonparametric methods are used widely to study the spectral characteristics of these time series data. Here, we extend the framework of nonparametric spectral methods to include the estimation of Granger causality spectra for assessing directional influences. We illustrate the utility of the proposed methods using synthetic data from network models consisting of interacting dynamical systems.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.100.018701