Transition route to elastic and elasto-inertial turbulence in polymer channel flows

Viscoelastic shear flows support additional chaotic states beyond simple Newtonian turbulence. In vanishing Reynolds number flows, the nonlinearity in the polymer evolution equation alone can sustain inertialess “elastic” turbulence (ET) while “elasto-inertial” turbulence (EIT) appears to rely on an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review fluids 2024-12, Vol.9 (12), Article 123302
Hauptverfasser: Beneitez, M., Page, J., Dubief, Y., Kerswell, R. R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physical review fluids
container_volume 9
creator Beneitez, M.
Page, J.
Dubief, Y.
Kerswell, R. R.
description Viscoelastic shear flows support additional chaotic states beyond simple Newtonian turbulence. In vanishing Reynolds number flows, the nonlinearity in the polymer evolution equation alone can sustain inertialess “elastic” turbulence (ET) while “elasto-inertial” turbulence (EIT) appears to rely on an interplay between elasticity and finite- R e effects. Despite their distinct phenomenology and industrial significance, transition routes and possible connections between these states are unknown. We identify here a common Ruelle-Takens transition scenario for both of these chaotic regimes in two-dimensional direct numerical simulations of FENE-P fluids in a straight channel. The primary bifurcation is caused by a recently discovered “polymer diffusive instability” associated with small but nonvanishing polymer stress diffusion which generates a finite-amplitude, small-scale traveling wave localized at the wall. This is found to be unstable to a large-scale secondary instability which grows to modify the whole flow before itself breaking down in a third bifurcation to either ET or EIT. The secondary large-scale instability waves resemble “center” and “wall” modes, respectively—instabilities which have been conjectured to play a role in viscoelastic chaotic dynamics but were previously only thought to exist far from relevant areas of the parameter space.
doi_str_mv 10.1103/PhysRevFluids.9.123302
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevFluids_9_123302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevFluids_9_123302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-e462f0c2342b865ed717ee4aa1f6620a34faaa336c7da5dc248d6704f4d952203</originalsourceid><addsrcrecordid>eNpV0M1KAzEYheEgCpbaW5DcwNT8NTNZSrEqFBSt4G74mnyhkTRTkozSuxepC12dd3UWDyHXnM05Z_LmeXcsL_i5imNwZW7mXEjJxBmZCKVNYwx7P__Tl2RWygdjjGvZtqabkNdNhlRCDUOieRgr0jpQjFBqsBSSO_XQhIS5Boi0jnk7RkwWaUj0MMTjHjO1O0gJI_Vx-CpX5MJDLDj73Sl5W91tlg_N-un-cXm7bizvWG1QaeGZFVKJbacX6FreIioA7rUWDKTyACCltq2DhbNCdU63THnlzEIIJqdEn35tHkrJ6PtDDnvIx56z_ken_6fTm_6kI78BSYVePg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transition route to elastic and elasto-inertial turbulence in polymer channel flows</title><source>American Physical Society Journals</source><creator>Beneitez, M. ; Page, J. ; Dubief, Y. ; Kerswell, R. R.</creator><creatorcontrib>Beneitez, M. ; Page, J. ; Dubief, Y. ; Kerswell, R. R.</creatorcontrib><description>Viscoelastic shear flows support additional chaotic states beyond simple Newtonian turbulence. In vanishing Reynolds number flows, the nonlinearity in the polymer evolution equation alone can sustain inertialess “elastic” turbulence (ET) while “elasto-inertial” turbulence (EIT) appears to rely on an interplay between elasticity and finite- R e effects. Despite their distinct phenomenology and industrial significance, transition routes and possible connections between these states are unknown. We identify here a common Ruelle-Takens transition scenario for both of these chaotic regimes in two-dimensional direct numerical simulations of FENE-P fluids in a straight channel. The primary bifurcation is caused by a recently discovered “polymer diffusive instability” associated with small but nonvanishing polymer stress diffusion which generates a finite-amplitude, small-scale traveling wave localized at the wall. This is found to be unstable to a large-scale secondary instability which grows to modify the whole flow before itself breaking down in a third bifurcation to either ET or EIT. The secondary large-scale instability waves resemble “center” and “wall” modes, respectively—instabilities which have been conjectured to play a role in viscoelastic chaotic dynamics but were previously only thought to exist far from relevant areas of the parameter space.</description><identifier>ISSN: 2469-990X</identifier><identifier>EISSN: 2469-990X</identifier><identifier>DOI: 10.1103/PhysRevFluids.9.123302</identifier><language>eng</language><ispartof>Physical review fluids, 2024-12, Vol.9 (12), Article 123302</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-e462f0c2342b865ed717ee4aa1f6620a34faaa336c7da5dc248d6704f4d952203</cites><orcidid>0000-0002-4045-7262 ; 0000-0001-5460-5337 ; 0000-0002-4564-5086 ; 0000-0001-8181-7597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Beneitez, M.</creatorcontrib><creatorcontrib>Page, J.</creatorcontrib><creatorcontrib>Dubief, Y.</creatorcontrib><creatorcontrib>Kerswell, R. R.</creatorcontrib><title>Transition route to elastic and elasto-inertial turbulence in polymer channel flows</title><title>Physical review fluids</title><description>Viscoelastic shear flows support additional chaotic states beyond simple Newtonian turbulence. In vanishing Reynolds number flows, the nonlinearity in the polymer evolution equation alone can sustain inertialess “elastic” turbulence (ET) while “elasto-inertial” turbulence (EIT) appears to rely on an interplay between elasticity and finite- R e effects. Despite their distinct phenomenology and industrial significance, transition routes and possible connections between these states are unknown. We identify here a common Ruelle-Takens transition scenario for both of these chaotic regimes in two-dimensional direct numerical simulations of FENE-P fluids in a straight channel. The primary bifurcation is caused by a recently discovered “polymer diffusive instability” associated with small but nonvanishing polymer stress diffusion which generates a finite-amplitude, small-scale traveling wave localized at the wall. This is found to be unstable to a large-scale secondary instability which grows to modify the whole flow before itself breaking down in a third bifurcation to either ET or EIT. The secondary large-scale instability waves resemble “center” and “wall” modes, respectively—instabilities which have been conjectured to play a role in viscoelastic chaotic dynamics but were previously only thought to exist far from relevant areas of the parameter space.</description><issn>2469-990X</issn><issn>2469-990X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpV0M1KAzEYheEgCpbaW5DcwNT8NTNZSrEqFBSt4G74mnyhkTRTkozSuxepC12dd3UWDyHXnM05Z_LmeXcsL_i5imNwZW7mXEjJxBmZCKVNYwx7P__Tl2RWygdjjGvZtqabkNdNhlRCDUOieRgr0jpQjFBqsBSSO_XQhIS5Boi0jnk7RkwWaUj0MMTjHjO1O0gJI_Vx-CpX5MJDLDj73Sl5W91tlg_N-un-cXm7bizvWG1QaeGZFVKJbacX6FreIioA7rUWDKTyACCltq2DhbNCdU63THnlzEIIJqdEn35tHkrJ6PtDDnvIx56z_ken_6fTm_6kI78BSYVePg</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Beneitez, M.</creator><creator>Page, J.</creator><creator>Dubief, Y.</creator><creator>Kerswell, R. R.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4045-7262</orcidid><orcidid>https://orcid.org/0000-0001-5460-5337</orcidid><orcidid>https://orcid.org/0000-0002-4564-5086</orcidid><orcidid>https://orcid.org/0000-0001-8181-7597</orcidid></search><sort><creationdate>20241218</creationdate><title>Transition route to elastic and elasto-inertial turbulence in polymer channel flows</title><author>Beneitez, M. ; Page, J. ; Dubief, Y. ; Kerswell, R. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-e462f0c2342b865ed717ee4aa1f6620a34faaa336c7da5dc248d6704f4d952203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beneitez, M.</creatorcontrib><creatorcontrib>Page, J.</creatorcontrib><creatorcontrib>Dubief, Y.</creatorcontrib><creatorcontrib>Kerswell, R. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Physical review fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beneitez, M.</au><au>Page, J.</au><au>Dubief, Y.</au><au>Kerswell, R. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition route to elastic and elasto-inertial turbulence in polymer channel flows</atitle><jtitle>Physical review fluids</jtitle><date>2024-12-18</date><risdate>2024</risdate><volume>9</volume><issue>12</issue><artnum>123302</artnum><issn>2469-990X</issn><eissn>2469-990X</eissn><abstract>Viscoelastic shear flows support additional chaotic states beyond simple Newtonian turbulence. In vanishing Reynolds number flows, the nonlinearity in the polymer evolution equation alone can sustain inertialess “elastic” turbulence (ET) while “elasto-inertial” turbulence (EIT) appears to rely on an interplay between elasticity and finite- R e effects. Despite their distinct phenomenology and industrial significance, transition routes and possible connections between these states are unknown. We identify here a common Ruelle-Takens transition scenario for both of these chaotic regimes in two-dimensional direct numerical simulations of FENE-P fluids in a straight channel. The primary bifurcation is caused by a recently discovered “polymer diffusive instability” associated with small but nonvanishing polymer stress diffusion which generates a finite-amplitude, small-scale traveling wave localized at the wall. This is found to be unstable to a large-scale secondary instability which grows to modify the whole flow before itself breaking down in a third bifurcation to either ET or EIT. The secondary large-scale instability waves resemble “center” and “wall” modes, respectively—instabilities which have been conjectured to play a role in viscoelastic chaotic dynamics but were previously only thought to exist far from relevant areas of the parameter space.</abstract><doi>10.1103/PhysRevFluids.9.123302</doi><orcidid>https://orcid.org/0000-0002-4045-7262</orcidid><orcidid>https://orcid.org/0000-0001-5460-5337</orcidid><orcidid>https://orcid.org/0000-0002-4564-5086</orcidid><orcidid>https://orcid.org/0000-0001-8181-7597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-990X
ispartof Physical review fluids, 2024-12, Vol.9 (12), Article 123302
issn 2469-990X
2469-990X
language eng
recordid cdi_crossref_primary_10_1103_PhysRevFluids_9_123302
source American Physical Society Journals
title Transition route to elastic and elasto-inertial turbulence in polymer channel flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20route%20to%20elastic%20and%20elasto-inertial%20turbulence%20in%20polymer%20channel%20flows&rft.jtitle=Physical%20review%20fluids&rft.au=Beneitez,%20M.&rft.date=2024-12-18&rft.volume=9&rft.issue=12&rft.artnum=123302&rft.issn=2469-990X&rft.eissn=2469-990X&rft_id=info:doi/10.1103/PhysRevFluids.9.123302&rft_dat=%3Ccrossref%3E10_1103_PhysRevFluids_9_123302%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true