Transition route to elastic and elasto-inertial turbulence in polymer channel flows

Viscoelastic shear flows support additional chaotic states beyond simple Newtonian turbulence. In vanishing Reynolds number flows, the nonlinearity in the polymer evolution equation alone can sustain inertialess “elastic” turbulence (ET) while “elasto-inertial” turbulence (EIT) appears to rely on an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review fluids 2024-12, Vol.9 (12), Article 123302
Hauptverfasser: Beneitez, M., Page, J., Dubief, Y., Kerswell, R. R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Viscoelastic shear flows support additional chaotic states beyond simple Newtonian turbulence. In vanishing Reynolds number flows, the nonlinearity in the polymer evolution equation alone can sustain inertialess “elastic” turbulence (ET) while “elasto-inertial” turbulence (EIT) appears to rely on an interplay between elasticity and finite- R e effects. Despite their distinct phenomenology and industrial significance, transition routes and possible connections between these states are unknown. We identify here a common Ruelle-Takens transition scenario for both of these chaotic regimes in two-dimensional direct numerical simulations of FENE-P fluids in a straight channel. The primary bifurcation is caused by a recently discovered “polymer diffusive instability” associated with small but nonvanishing polymer stress diffusion which generates a finite-amplitude, small-scale traveling wave localized at the wall. This is found to be unstable to a large-scale secondary instability which grows to modify the whole flow before itself breaking down in a third bifurcation to either ET or EIT. The secondary large-scale instability waves resemble “center” and “wall” modes, respectively—instabilities which have been conjectured to play a role in viscoelastic chaotic dynamics but were previously only thought to exist far from relevant areas of the parameter space.
ISSN:2469-990X
2469-990X
DOI:10.1103/PhysRevFluids.9.123302