Thermodynamic depth of causal states: Objective complexity via minimal representations

Thermodynamic depth is an appealing but flawed structural complexity measure. It depends on a set of macroscopic states for a system, but neither its original introduction by Lloyd and Pagels nor any follow-up work has considered how to select these states. Depth, therefore, is at root arbitrary. Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999-01, Vol.59 (1), p.275-283
Hauptverfasser: Crutchfield, James P., Shalizi, Cosma Rohilla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermodynamic depth is an appealing but flawed structural complexity measure. It depends on a set of macroscopic states for a system, but neither its original introduction by Lloyd and Pagels nor any follow-up work has considered how to select these states. Depth, therefore, is at root arbitrary. Computational mechanics, an alternative approach to structural complexity, provides a definition for a system{close_quote}s minimal, necessary causal states and a procedure for finding them. We show that the rate of increase in thermodynamic depth, or {ital dive}, is the system{close_quote}s reverse-time Shannon entropy rate, and so depth only measures degrees of macroscopic randomness, not structure. To fix this, we redefine the depth in terms of the causal state representation{emdash}{epsilon}-machines{emdash}and show that this representation gives the minimum dive consistent with accurate prediction. Thus, {epsilon}-machines are optimally shallow. {copyright} {ital 1999} {ital The American Physical Society}
ISSN:1063-651X
1095-3787
DOI:10.1103/PhysRevE.59.275