Power enhancement by increasing the initial array radius and wire number of tungsten Z pinches

Tungsten wire array implosions on the 7- to 8-MA Saturn generator have been optimized using wire number and array diameter variations to produce 75{plus_minus}10TW of x rays with total energy outputs of 450{plus_minus}50kJ. By increasing the number of wires in a 12.5-mm-diam array from 24 to 70 and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997-11, Vol.56 (5), p.5945-5958
Hauptverfasser: Deeney, C., Nash, T. J., Spielman, R. B., Seaman, J. F., Chandler, G. C., Struve, K. W., Porter, J. L., Stygar, W. A., McGurn, J. S., Jobe, D. O., Gilliland, T. L., Torres, J. A., Vargas, M. F., Ruggles, L. E., Breeze, S., Mock, R. C., Douglas, M. R., Fehl, D. L., McDaniel, D. H., Matzen, M. K., Peterson, D. L., Matuska, W., Roderick, N. F., MacFarlane, J. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tungsten wire array implosions on the 7- to 8-MA Saturn generator have been optimized using wire number and array diameter variations to produce 75{plus_minus}10TW of x rays with total energy outputs of 450{plus_minus}50kJ. By increasing the number of wires in a 12.5-mm-diam array from 24 to 70 and simultaneously decreasing the individual wire diameter from 13 to 7.5 {mu}m, the total radiated power increased from 20{plus_minus}3 to 40{plus_minus}6TW and the x-ray pulse width decreased from 18 to 8.5 ns. In addition, a diameter scan at an implosion time of 50{plus_minus}5ns showed that the pulse width has a strong dependence on collapse velocity and wire thickness. For the largest diameter load of 17.5 mm with 120 5-{mu}m-diam wires, a 4-ns pulse width with a peak power of 75{plus_minus}10TW was achieved: four times power gain over the 20-TW electrical power generated by the pulsed power system. Time-resolved pinhole photography confirms that the power enhancement with increased wire number is associated with the plasma achieving a tighter compression and better axial uniformity. For the higher-velocity implosions, we infer from two-dimensional radiation-magnetohydrodynamic calculations that the plasma becomes hotter and hence radiates at a higher brightness temperature. Zero- and two-dimensional load models coupled with a detailed circuit model have shown expected radial kinetic energies in the range of 100{endash}200 kJ. The total radiated energy of {gt}400kJ in a 4{endash}20-ns FWHM pulse exceeds the total kinetic energy by more than a factor of 2. Two-dimensional, three-temperature simulations reproduce the observed trends in powers and pulse widths by using a variable initial random density perturbation. These calculations also indicate that the radiated energy is accounted for by the total work done on the plasma by the magnetic field. {copyright} {ital 1997} {ital The American Physical Society}
ISSN:1063-651X
1095-3787
DOI:10.1103/PhysRevE.56.5945