Fluctuating phase rigidity for a quantum chaotic system with partially broken time-reversal symmetry

The functional {rho}={vert_bar}{integral}d{rvec r}{psi}{sup 2}{vert_bar}{sup 2} measures the phase rigidity of a chaotic wave function {psi}({rvec r}) in the transition between Hamiltonian ensembles with orthogonal and unitary symmetry. Upon breaking time-reversal symmetry, {rho} crosses over from o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997-01, Vol.55 (1), p.R1-R4
Hauptverfasser: van Langen, S. A., Brouwer, P. W., Beenakker, C. W. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page R4
container_issue 1
container_start_page R1
container_title Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
container_volume 55
creator van Langen, S. A.
Brouwer, P. W.
Beenakker, C. W. J.
description The functional {rho}={vert_bar}{integral}d{rvec r}{psi}{sup 2}{vert_bar}{sup 2} measures the phase rigidity of a chaotic wave function {psi}({rvec r}) in the transition between Hamiltonian ensembles with orthogonal and unitary symmetry. Upon breaking time-reversal symmetry, {rho} crosses over from one to zero. We compute the distribution of {rho} in the crossover regime and find that it has large fluctuations around the ensemble average. These fluctuations imply long-range spatial correlations in {psi} and non-Gaussian perturbations of eigenvalues, in precise agreement with results by Fal{close_quote}ko and Efetov [Phys. Rev. Lett. {bold 77}, 912 (1996)] and by Taniguchi {ital et al.} [Europhys. Lett. {bold 27}, 335 (1994)]. As a third implication of the phase-rigidity fluctuations we find correlations in the response of an eigenvalue to independent perturbations of the system. {copyright} {ital 1997} {ital The American Physical Society}
doi_str_mv 10.1103/PhysRevE.55.R1
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevE_55_R1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevE_55_R1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-a37ccb9ddd7d75a942fa2ecbfdce212bbefc60a95ee393586d22a307fa4cd9683</originalsourceid><addsrcrecordid>eNo1kMtOwzAURC0EEqWwZW0-IMGO67hZoqoFpEqgCiR21o190xjyKLZTlL-nVWE2M4ujWRxCbjlLOWfi_rUewwb3y1TKdMPPyISzQiZCzdX5ceciySX_uCRXIXyyQzhjE2JXzWDiANF1W7qrISD1buusiyOtek-Bfg_QxaGlpoY-OkPDGCK29MfFmu7ARwdNM9LS91_Y0ehaTDzu0QdoDmjbYvTjNbmooAl489dT8r5avi2ekvXL4_PiYZ0YwURMQChjysJaq6ySUMyyCjI0ZWUNZjwrS6xMzqCQiKIQcp7bLAPBVAUzY4t8Lqbk7vTbh-h0MC6iqU3fdWiinuWKFerApCfG-D4Ej5XeedeCHzVn-uhR_3vUUuoNF79fy2v4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluctuating phase rigidity for a quantum chaotic system with partially broken time-reversal symmetry</title><source>American Physical Society Journals</source><creator>van Langen, S. A. ; Brouwer, P. W. ; Beenakker, C. W. J.</creator><creatorcontrib>van Langen, S. A. ; Brouwer, P. W. ; Beenakker, C. W. J.</creatorcontrib><description>The functional {rho}={vert_bar}{integral}d{rvec r}{psi}{sup 2}{vert_bar}{sup 2} measures the phase rigidity of a chaotic wave function {psi}({rvec r}) in the transition between Hamiltonian ensembles with orthogonal and unitary symmetry. Upon breaking time-reversal symmetry, {rho} crosses over from one to zero. We compute the distribution of {rho} in the crossover regime and find that it has large fluctuations around the ensemble average. These fluctuations imply long-range spatial correlations in {psi} and non-Gaussian perturbations of eigenvalues, in precise agreement with results by Fal{close_quote}ko and Efetov [Phys. Rev. Lett. {bold 77}, 912 (1996)] and by Taniguchi {ital et al.} [Europhys. Lett. {bold 27}, 335 (1994)]. As a third implication of the phase-rigidity fluctuations we find correlations in the response of an eigenvalue to independent perturbations of the system. {copyright} {ital 1997} {ital The American Physical Society}</description><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/PhysRevE.55.R1</identifier><language>eng</language><publisher>United States</publisher><subject>chaos ; EIGENVALUES ; FLUCTUATIONS ; PERTURBATION THEORY ; PHASE STUDIES ; PHYSICS ; QUANTUM MECHANICS ; SYMMETRY BREAKING ; T INVARIANCE ; WAVE FUNCTIONS</subject><ispartof>Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997-01, Vol.55 (1), p.R1-R4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-a37ccb9ddd7d75a942fa2ecbfdce212bbefc60a95ee393586d22a307fa4cd9683</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/467097$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>van Langen, S. A.</creatorcontrib><creatorcontrib>Brouwer, P. W.</creatorcontrib><creatorcontrib>Beenakker, C. W. J.</creatorcontrib><title>Fluctuating phase rigidity for a quantum chaotic system with partially broken time-reversal symmetry</title><title>Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics</title><description>The functional {rho}={vert_bar}{integral}d{rvec r}{psi}{sup 2}{vert_bar}{sup 2} measures the phase rigidity of a chaotic wave function {psi}({rvec r}) in the transition between Hamiltonian ensembles with orthogonal and unitary symmetry. Upon breaking time-reversal symmetry, {rho} crosses over from one to zero. We compute the distribution of {rho} in the crossover regime and find that it has large fluctuations around the ensemble average. These fluctuations imply long-range spatial correlations in {psi} and non-Gaussian perturbations of eigenvalues, in precise agreement with results by Fal{close_quote}ko and Efetov [Phys. Rev. Lett. {bold 77}, 912 (1996)] and by Taniguchi {ital et al.} [Europhys. Lett. {bold 27}, 335 (1994)]. As a third implication of the phase-rigidity fluctuations we find correlations in the response of an eigenvalue to independent perturbations of the system. {copyright} {ital 1997} {ital The American Physical Society}</description><subject>chaos</subject><subject>EIGENVALUES</subject><subject>FLUCTUATIONS</subject><subject>PERTURBATION THEORY</subject><subject>PHASE STUDIES</subject><subject>PHYSICS</subject><subject>QUANTUM MECHANICS</subject><subject>SYMMETRY BREAKING</subject><subject>T INVARIANCE</subject><subject>WAVE FUNCTIONS</subject><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo1kMtOwzAURC0EEqWwZW0-IMGO67hZoqoFpEqgCiR21o190xjyKLZTlL-nVWE2M4ujWRxCbjlLOWfi_rUewwb3y1TKdMPPyISzQiZCzdX5ceciySX_uCRXIXyyQzhjE2JXzWDiANF1W7qrISD1buusiyOtek-Bfg_QxaGlpoY-OkPDGCK29MfFmu7ARwdNM9LS91_Y0ehaTDzu0QdoDmjbYvTjNbmooAl489dT8r5avi2ekvXL4_PiYZ0YwURMQChjysJaq6ySUMyyCjI0ZWUNZjwrS6xMzqCQiKIQcp7bLAPBVAUzY4t8Lqbk7vTbh-h0MC6iqU3fdWiinuWKFerApCfG-D4Ej5XeedeCHzVn-uhR_3vUUuoNF79fy2v4</recordid><startdate>199701</startdate><enddate>199701</enddate><creator>van Langen, S. A.</creator><creator>Brouwer, P. W.</creator><creator>Beenakker, C. W. J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199701</creationdate><title>Fluctuating phase rigidity for a quantum chaotic system with partially broken time-reversal symmetry</title><author>van Langen, S. A. ; Brouwer, P. W. ; Beenakker, C. W. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-a37ccb9ddd7d75a942fa2ecbfdce212bbefc60a95ee393586d22a307fa4cd9683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>chaos</topic><topic>EIGENVALUES</topic><topic>FLUCTUATIONS</topic><topic>PERTURBATION THEORY</topic><topic>PHASE STUDIES</topic><topic>PHYSICS</topic><topic>QUANTUM MECHANICS</topic><topic>SYMMETRY BREAKING</topic><topic>T INVARIANCE</topic><topic>WAVE FUNCTIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>van Langen, S. A.</creatorcontrib><creatorcontrib>Brouwer, P. W.</creatorcontrib><creatorcontrib>Beenakker, C. W. J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Langen, S. A.</au><au>Brouwer, P. W.</au><au>Beenakker, C. W. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluctuating phase rigidity for a quantum chaotic system with partially broken time-reversal symmetry</atitle><jtitle>Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics</jtitle><date>1997-01</date><risdate>1997</risdate><volume>55</volume><issue>1</issue><spage>R1</spage><epage>R4</epage><pages>R1-R4</pages><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>The functional {rho}={vert_bar}{integral}d{rvec r}{psi}{sup 2}{vert_bar}{sup 2} measures the phase rigidity of a chaotic wave function {psi}({rvec r}) in the transition between Hamiltonian ensembles with orthogonal and unitary symmetry. Upon breaking time-reversal symmetry, {rho} crosses over from one to zero. We compute the distribution of {rho} in the crossover regime and find that it has large fluctuations around the ensemble average. These fluctuations imply long-range spatial correlations in {psi} and non-Gaussian perturbations of eigenvalues, in precise agreement with results by Fal{close_quote}ko and Efetov [Phys. Rev. Lett. {bold 77}, 912 (1996)] and by Taniguchi {ital et al.} [Europhys. Lett. {bold 27}, 335 (1994)]. As a third implication of the phase-rigidity fluctuations we find correlations in the response of an eigenvalue to independent perturbations of the system. {copyright} {ital 1997} {ital The American Physical Society}</abstract><cop>United States</cop><doi>10.1103/PhysRevE.55.R1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-651X
ispartof Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997-01, Vol.55 (1), p.R1-R4
issn 1063-651X
1095-3787
language eng
recordid cdi_crossref_primary_10_1103_PhysRevE_55_R1
source American Physical Society Journals
subjects chaos
EIGENVALUES
FLUCTUATIONS
PERTURBATION THEORY
PHASE STUDIES
PHYSICS
QUANTUM MECHANICS
SYMMETRY BREAKING
T INVARIANCE
WAVE FUNCTIONS
title Fluctuating phase rigidity for a quantum chaotic system with partially broken time-reversal symmetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluctuating%20phase%20rigidity%20for%20a%20quantum%20chaotic%20system%20with%20partially%20broken%20time-reversal%20symmetry&rft.jtitle=Physical%20Review.%20E,%20Statistical%20Physics,%20Plasmas,%20Fluids,%20and%20Related%20Interdisciplinary%20Topics&rft.au=van%20Langen,%20S.%20A.&rft.date=1997-01&rft.volume=55&rft.issue=1&rft.spage=R1&rft.epage=R4&rft.pages=R1-R4&rft.issn=1063-651X&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.55.R1&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevE_55_R1%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true