Fluctuating phase rigidity for a quantum chaotic system with partially broken time-reversal symmetry
The functional {rho}={vert_bar}{integral}d{rvec r}{psi}{sup 2}{vert_bar}{sup 2} measures the phase rigidity of a chaotic wave function {psi}({rvec r}) in the transition between Hamiltonian ensembles with orthogonal and unitary symmetry. Upon breaking time-reversal symmetry, {rho} crosses over from o...
Gespeichert in:
Veröffentlicht in: | Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997-01, Vol.55 (1), p.R1-R4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The functional {rho}={vert_bar}{integral}d{rvec r}{psi}{sup 2}{vert_bar}{sup 2} measures the phase rigidity of a chaotic wave function {psi}({rvec r}) in the transition between Hamiltonian ensembles with orthogonal and unitary symmetry. Upon breaking time-reversal symmetry, {rho} crosses over from one to zero. We compute the distribution of {rho} in the crossover regime and find that it has large fluctuations around the ensemble average. These fluctuations imply long-range spatial correlations in {psi} and non-Gaussian perturbations of eigenvalues, in precise agreement with results by Fal{close_quote}ko and Efetov [Phys. Rev. Lett. {bold 77}, 912 (1996)] and by Taniguchi {ital et al.} [Europhys. Lett. {bold 27}, 335 (1994)]. As a third implication of the phase-rigidity fluctuations we find correlations in the response of an eigenvalue to independent perturbations of the system. {copyright} {ital 1997} {ital The American Physical Society} |
---|---|
ISSN: | 1063-651X 1095-3787 |
DOI: | 10.1103/PhysRevE.55.R1 |