Zero-mass plane waves in nonzero gravitational backgrounds

The mathematical definition of what is intuitively called a ''plane wave'' on the curved background of a black hole is clarified and discussed from the viewpoints of potentials and fields. Because of the long-range Newtonian part of the gravitational field the asymptotic wave fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev., D; (United States) D; (United States), 1976-01, Vol.14 (2), p.317-326
Hauptverfasser: Chrzanowski, Paul L., Matzner, Richard A., Sandberg, Vernon D., Ryan, Michael P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mathematical definition of what is intuitively called a ''plane wave'' on the curved background of a black hole is clarified and discussed from the viewpoints of potentials and fields. Because of the long-range Newtonian part of the gravitational field the asymptotic wave fronts of an incident ''plane wave'' (describing a radiative perturbation for a scattering experiment) are distorted in a manner analogous to the wave fronts of an electron beam in the quantum-mechanical Coulomb scattering problem. In addition, the electromagnetic and gravitational fields can be described with either a potential formalism (i.e., the vector potential and the metric perturbation) or a field formalism (i.e., the electromagnetic field tensor and the Riemann tensor). In this paper we present a distorted ''plane wave'' prescription, necessary for the calculation of the scattering cross sections of electromagnetic and gravitational waves off of a black hole, which agrees with the accepted prescription for a massless scalar field and satisfies the intuitive notions of what constitutes a ''plane wave'' in terms of potentials and fields. (AIP)
ISSN:0556-2821
DOI:10.1103/PhysRevD.14.317