Black hole scattering near the transition to plunge: Self-force and resummation of post-Minkowskian theory
Geodesic scattering of a test particle off a Schwarzschild black hole can be parametrized by the speed-at-infinity v and the impact parameter b , with a “separatrix,” b = b c ( v ) , marking the threshold between scattering and plunge. Near the separatrix, the scattering angle diverges as ∼ log ( b...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2024-08, Vol.110 (4), Article 044039 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Geodesic scattering of a test particle off a Schwarzschild black hole can be parametrized by the speed-at-infinity
v
and the impact parameter
b
, with a “separatrix,”
b
=
b
c
(
v
)
, marking the threshold between scattering and plunge. Near the separatrix, the scattering angle diverges as
∼
log
(
b
−
b
c
)
. The self-force correction to the scattering angle (at fixed
v
,
b
) diverges even faster, like
∼
A
1
(
v
)
b
c
/
(
b
−
b
c
)
. Here we numerically calculate the divergence coefficient
A
1
(
v
)
in a scalar-charge toy model. We then use our knowledge of
A
1
(
v
)
to inform a resummation of the post-Minkowskian expansion for the scattering angle, and demonstrate that the resummed series agrees remarkably well with numerical self-force results even in the strong-field regime. We propose that a similar resummation technique, applied to a mass particle subject to a gravitational self-force, can significantly enhance the utility and regime of validity of post-Minkowskian calculations for black-hole scattering. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.110.044039 |