Probing conversion-driven freeze-out at the LHC

Conversion-driven freeze-out is an appealing mechanism to explain the observed relic density while naturally accommodating the null results from direct and indirect detection due to a very weak dark matter coupling. Interestingly, the scenario predicts long-lived particles decaying into dark matter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2024-07, Vol.110 (1), Article 015031
Hauptverfasser: Heisig, Jan, Lessa, Andre, Ramos, Lucas Magno D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conversion-driven freeze-out is an appealing mechanism to explain the observed relic density while naturally accommodating the null results from direct and indirect detection due to a very weak dark matter coupling. Interestingly, the scenario predicts long-lived particles decaying into dark matter with lifetimes favorably coinciding with the range that can be resolved at the LHC. However, the small mass splitting between the long-lived particle and dark matter renders the visible decay products soft, thus challenging current search strategies. We consider four different classes of searches covering the entire range of lifetimes: heavy stable charge particles, disappearing tracks, displaced vertices, and missing energy searches. We discuss the applicability of these searches to conversion-driven freeze-out and derive current constraints highlighting their complementarity. For the displaced vertex search, we demonstrate how a slight modification of the current analysis significantly improves its sensitivity to the scenario.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.110.015031