Probing conversion-driven freeze-out at the LHC
Conversion-driven freeze-out is an appealing mechanism to explain the observed relic density while naturally accommodating the null results from direct and indirect detection due to a very weak dark matter coupling. Interestingly, the scenario predicts long-lived particles decaying into dark matter...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2024-07, Vol.110 (1), Article 015031 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conversion-driven freeze-out is an appealing mechanism to explain the observed relic density while naturally accommodating the null results from direct and indirect detection due to a very weak dark matter coupling. Interestingly, the scenario predicts long-lived particles decaying into dark matter with lifetimes favorably coinciding with the range that can be resolved at the LHC. However, the small mass splitting between the long-lived particle and dark matter renders the visible decay products soft, thus challenging current search strategies. We consider four different classes of searches covering the entire range of lifetimes: heavy stable charge particles, disappearing tracks, displaced vertices, and missing energy searches. We discuss the applicability of these searches to conversion-driven freeze-out and derive current constraints highlighting their complementarity. For the displaced vertex search, we demonstrate how a slight modification of the current analysis significantly improves its sensitivity to the scenario. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.110.015031 |