Quantum mechanical bootstrap on the interval: Obtaining the exact spectrum

We show that for a particular model, the quantum mechanical bootstrap is capable of finding exact results. We consider a solvable system with Hamiltonian H = S Z ( 1 − Z ) S , where Z and S satisfy canonical commutation relations. While this model may appear unusual, using an appropriate coordinate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2024-06, Vol.109 (12), Article 126002
Hauptverfasser: Sword, Lewis, Vegh, David
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that for a particular model, the quantum mechanical bootstrap is capable of finding exact results. We consider a solvable system with Hamiltonian H = S Z ( 1 − Z ) S , where Z and S satisfy canonical commutation relations. While this model may appear unusual, using an appropriate coordinate transformation, the Schrödinger equation can be cast into a standard form with a Pöschl-Teller-type potential. Since the system is defined on an interval, it is well-known that S is not self-adjoint. Nevertheless, the bootstrap method can still be implemented, producing an infinite set of positivity constraints. Using a certain operator ordering, the energy eigenvalues are only constrained into bands. With an alternative ordering, however, we find that a finite number of constraints is sufficient to fix the low-lying energy levels exactly.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.109.126002