Operator product expansion for radial lattice quantization of 3D ϕ 4 theory

At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory (CFT), the 3D Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the quantum finite elements method to implement radially quantized critical ϕ 4 theory on simplicial la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2024-06, Vol.109 (11), Article 114518
Hauptverfasser: Ayyar, Venkitesh, Brower, Richard C., Fleming, George T., Glück, Anna-Maria E., Owen, Evan K., Raben, Timothy G., Tan, Chung-I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory (CFT), the 3D Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the quantum finite elements method to implement radially quantized critical ϕ 4 theory on simplicial lattices approaching R × S 2 . Computing the four-point function of identical scalars, we demonstrate the power of radial quantization by the accurate determination of the scaling dimensions Δ ε and Δ T as well as ratios of the operator product expansion coefficients f σ σ ε and f σ σ T of the first spin-0 and spin-2 primary operators ε and T of the 3D Ising CFT.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.109.114518