Application of neural networks for the reconstruction of supernova neutrino energy spectra following fast neutrino flavor conversions

Neutrinos can undergo fast flavor conversions (FFCs) within extremely dense astrophysical environments, such as core-collapse supernovae (CCSNe) and neutron star mergers (NSMs). In this study, we explore FFCs in a neutrino gas, revealing that when the FFC growth rate significantly exceeds that of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2024-04, Vol.109 (8), Article 083019
Hauptverfasser: Abbar, Sajad, Wu, Meng-Ru, Xiong, Zewei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neutrinos can undergo fast flavor conversions (FFCs) within extremely dense astrophysical environments, such as core-collapse supernovae (CCSNe) and neutron star mergers (NSMs). In this study, we explore FFCs in a neutrino gas, revealing that when the FFC growth rate significantly exceeds that of the vacuum Hamiltonian, all neutrinos (regardless of energy) share a common survival probability dictated by the energy-integrated neutrino spectrum. We then employ physics-informed neural networks (PINNs) to predict the asymptotic outcomes of FFCs within such a multienergy neutrino gas. These predictions are based on the first two moments of neutrino angular distributions for each energy bin, typically available in state-of-the-art CCSN and NSM simulations. Our PINNs achieve errors as low as ≲ 6 % and ≲ 18 % for predicting the number of neutrinos in the electron channel and the relative absolute error in the neutrino moments, respectively.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.109.083019