Precision measurement of Compton scattering in silicon with a skipper CCD for dark matter detection
Experiments aiming to directly detect dark matter through particle recoils can achieve energy thresholds of $\mathcal{O}(1\,\mathrm{eV})$. In this regime, ionization signals from small-angle Compton scatters of environmental $\gamma$-rays constitute a significant background. Monte Carlo simulations...
Gespeichert in:
Veröffentlicht in: | Phys.Rev.D 2022-11, Vol.106 (9), Article 092001 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experiments aiming to directly detect dark matter through particle recoils can achieve energy thresholds of $\mathcal{O}(1\,\mathrm{eV})$. In this regime, ionization signals from small-angle Compton scatters of environmental $\gamma$-rays constitute a significant background. Monte Carlo simulations used to build background models have not been experimentally validated at these low energies. We report a precision measurement of Compton scattering on silicon atomic shell electrons down to 23$\,$eV. A skipper charge-coupled device (CCD) with single-electron resolution, developed for the DAMIC-M experiment, was exposed to a $^{241}$Am $\gamma$-ray source over several months. Features associated with the silicon K, L$_{1}$, and L$_{2,3}$-shells are clearly identified, and scattering on valence electrons is detected for the first time below 100$\,$eV. We find that the relativistic impulse approximation for Compton scattering, which is implemented in Monte Carlo simulations commonly used by direct detection experiments, does not reproduce the measured spectrum below 0.5$\,$keV. The data are in better agreement with $ab$$initio$ calculations originally developed for X-ray absorption spectroscopy. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.106.092001 |