Dual formulations of Polyakov loop lattice models

Dual representations are constructed for non-Abelian lattice spin models with U(N) and SU(N) symmetry groups, for all N and in any dimension. These models are usually related to the effective models describing the interaction between Polyakov loops in the strong coupled QCD. The original spin degree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-07, Vol.102 (1), Article 014502
Hauptverfasser: Borisenko, O., Chelnokov, Voloshyn, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dual representations are constructed for non-Abelian lattice spin models with U(N) and SU(N) symmetry groups, for all N and in any dimension. These models are usually related to the effective models describing the interaction between Polyakov loops in the strong coupled QCD. The original spin degrees of freedom are explicitly integrated out and a dual theory appears to be a local theory for the dual integer-valued variables. The construction is performed for the partition function and for the most general correlation function. The latter include the two-point function corresponding to quark-anti-quark free energy and the N-point function related to the free energy of a baryon. We consider both pure gauge models and models with static fermion determinant for both the staggered and Wilson fermions with an arbitrary number of flavours. While the Boltzmann weights of such models are complex in the presence of nonzero chemical potential the dual Boltzmann weights appear to be strictly positive on admissible configurations. An essential part of this work with respect to previous studies is an extension of the dual representation to the case of (1) an arbitrary value of the temporal coupling constant in the Wilson action and (2) an arbitrary number of flavors of static quark determinants. The applications and extensions of the results are discussed in detail. In particular, we outline a possible approach to Monte-Carlo simulations of the dual theory, to the large N expansion and to the development of a tensor renormalization group.
ISSN:1550-7998
2470-0010
1550-2368
2470-0029
DOI:10.1103/PhysRevD.102.014502