Parametrized ringdown spin expansion coefficients: A data-analysis framework for black-hole spectroscopy with multiple events

Black-hole spectroscopy is arguably the most promising tool to test gravity in extreme regimes and to probe the ultimate nature of black holes with unparalleled precision. These tests are currently limited by the lack of a ringdown parametrization that is both robust and accurate. We develop an obse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-01, Vol.101 (2), p.1, Article 024043
Hauptverfasser: Maselli, Andrea, Pani, Paolo, Gualtieri, Leonardo, Berti, Emanuele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Black-hole spectroscopy is arguably the most promising tool to test gravity in extreme regimes and to probe the ultimate nature of black holes with unparalleled precision. These tests are currently limited by the lack of a ringdown parametrization that is both robust and accurate. We develop an observable-based parametrization of the ringdown of spinning black holes beyond general relativity, which we dub ParSpec (parametrized ringdown spin expansion coefficients). This approach is perturbative in the spin, but it can be made arbitrarily precise (at least in principle) through a high-order expansion. It requires O(10) ringdown detections, which should be routinely available with the planned space mission LISA and with third-generation ground-based detectors. We provide a preliminary analysis of the projected bounds on parametrized ringdown parameters with LISA and with the Einstein Telescope, and discuss extensions of our model that can be straightforwardly included in the future.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.101.024043