Gamow-Teller excitations at finite temperature: Competition between pairing and temperature effects
The relativistic and nonrelativistic finite temperature proton-neutron quasiparticle random phase approximation (FT-PNQRPA) methods are developed to study the interplay of the pairing and temperature effects on the Gamow-Teller excitations in open-shell nuclei, as well as to explore the model depend...
Gespeichert in:
Veröffentlicht in: | Phys.Rev.C 2020-04, Vol.101 (4), Article 044305 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The relativistic and nonrelativistic finite temperature proton-neutron quasiparticle random phase approximation (FT-PNQRPA) methods are developed to study the interplay of the pairing and temperature effects on the Gamow-Teller excitations in open-shell nuclei, as well as to explore the model dependence of the results by using two rather different frameworks for effective nuclear interactions. The Skyrme-type functional SkM* is employed in the nonrelativistic framework, while the density-dependent meson-exchange interaction DD-ME2 is implemented in the relativistic approach. Both the isoscalar and isovector pairing interactions are taken into account within the FT-PNQRPA. Model calculations show that below the critical temperatures the Gamow-Teller excitations display a sensitivity to both the finite temperature and pairing effects, and this demonstrates the necessity for implementing both in the theoretical framework. The established FT-PNQRPA opens perspectives for the future complete and consistent description of astrophysically relevant weak interaction processes in nuclei at finite temperature such as beta decays, electron capture, and neutrino-nucleus reactions. |
---|---|
ISSN: | 2469-9985 2469-9993 |
DOI: | 10.1103/PhysRevC.101.044305 |