NATIVE DEFECTS AND SELF-COMPENSATION IN ZNSE
Wide-band-gap semiconductors typically can be doped either n type or p type, but not both. Compensation by native point defects has often been invoked as the source of this difficulty. We examine the wide-band-gap semiconductor ZnSe with first-principles total-energy calculations, using a mixed-basi...
Gespeichert in:
Veröffentlicht in: | Physical review. B 1992-05, Vol.45 (19), p.10965-10978 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wide-band-gap semiconductors typically can be doped either n type or p type, but not both. Compensation by native point defects has often been invoked as the source of this difficulty. We examine the wide-band-gap semiconductor ZnSe with first-principles total-energy calculations, using a mixed-basis program for an accurate description of the material. Formation energies are calculated for all native point defects in all relevant charge states; the effects of relaxation energies and vibrational entropies are investigated. The results conclusively show that native-point-defect concentrations are too low to cause compensation in stoichiometric ZnSe. We further find that, for nonstoichiometric ZnSe, native point defects compensate both n-type and p-type material; thus deviations from stoichiometry cannot explain why ZnSe can be doped only one way. |
---|---|
ISSN: | 2469-9950 0163-1829 2469-9969 1095-3795 |
DOI: | 10.1103/PhysRevB.45.10965 |