Anatomy of inertial magnons in ferromagnetic nanostructures

We analyze dispersion relations of magnons in ferromagnetic nanostructures with uniaxial anisotropy taking into account inertial terms, i.e., magnetic nutation. Inertial effects are parametrized by the damping-independent parameter beta, which allows for an unambiguous discrimination of inertial eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-08, Vol.104 (5), p.1, Article 054425
Hauptverfasser: Lomonosov, Alexey M., Temnov, Vasily V., Wegrowe, Jean-Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze dispersion relations of magnons in ferromagnetic nanostructures with uniaxial anisotropy taking into account inertial terms, i.e., magnetic nutation. Inertial effects are parametrized by the damping-independent parameter beta, which allows for an unambiguous discrimination of inertial effects from Gilbert damping parameter a. The analysis of magnon dispersion relation shows its two branches are modified by the inertial effect, albeit in different ways. The upper nutation branch starts at omega = 1/beta, the lower branch coincides with ferromagnetic resonance (FMR) in the long-wavelength limit and deviates from the zero-inertia parabolic dependence similar to omega(FMR) + Dk(2) of the exchange magnon. Taking a realistic experimental geometry of magnetic thin films, nanowires, and nanodiscs, magnon eigenfrequencies, eigenvectors, and Q-factors are found to depend on the shape anisotropy. The possibility of phase-matched magnetoelastic excitation of nutation magnons is discussed and the condition was found to depend on beta, exchange stiffness D, and the acoustic velocity.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.104.054425