Superconductor-insulator transition in Josephson junction chains by quantum Monte Carlo calculations
We study the zero-temperature phase diagram of a dissipationless and disorder-free Josephson junction chain. Namely, we determine the critical Josephson energy below which the chain becomes insulating as a function of the ratio of two capacitances: the capacitance of each Josephson junction and the...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-01, Vol.101 (2), p.1, Article 024518 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the zero-temperature phase diagram of a dissipationless and disorder-free Josephson junction chain. Namely, we determine the critical Josephson energy below which the chain becomes insulating as a function of the ratio of two capacitances: the capacitance of each Josephson junction and the capacitance between each superconducting island and the ground. We develop an imaginary-time path integral quantum Monte Carlo algorithm in the charge representation, which enables us to efficiently handle the electrostatic part of the chain Hamiltonian. We find that a large part of the phase diagram is determined by anharmonic corrections which are not captured by the standard Kosterlitz-Thouless renormalization group description of the transition. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.101.024518 |