Real-time Monitoring of Aerosols Generated from Toilet Flushing
Flushing toilets generate visible droplets from turbulent flow, but also produce numerous smaller airborne droplets (∼micrometres in size) through atomisation. Flushing may aerosolise pathogens from stool or urine, spreading disease. This study continuously monitored aerosols in a shared office lava...
Gespeichert in:
Veröffentlicht in: | Access microbiology 2020-02, Vol.2 (2) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flushing toilets generate visible droplets from turbulent flow, but also produce numerous smaller airborne droplets (∼micrometres in size) through atomisation. Flushing may aerosolise pathogens from stool or urine, spreading disease. This study continuously monitored aerosols in a shared office lavatory over a week using a biological particle detector, the Wideband Integrated Bioaerosol Sensor (WIBS). This instrument monitors individual particle sizes and numbers and identifies fluorescent particles likely to be droplets containing bacteria.
The toilet was a standard wash-down design, (Armitage Shanks), with a lid. No statistically significant variation between fluorescent particle counts was found between periods prior to flushing. Fluorescent particle numbers and intensity increased with toilet flushing, remaining above background for 5 minutes post-flushing on average. Placing the toilet lid down significantly (P |
---|---|
ISSN: | 2516-8290 2516-8290 |
DOI: | 10.1099/acmi.fis2019.po0192 |