Green process for green materials: viable low-temperature lipase-catalysed synthesis of renewable telechelics in supercritical CO 2

We present a novel near-ambient-temperature approach to telechelic renewable polyesters by exploiting the unique properties of supercritical CO 2 (scCO 2 ). Bio-based commercially available monomers have been polymerized and functional telechelic materials with targeted molecular weight prepared by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2015-12, Vol.373 (2057), p.20150073
Hauptverfasser: Curia, S., Barclay, A. F., Torron, S., Johansson, M., Howdle, S. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel near-ambient-temperature approach to telechelic renewable polyesters by exploiting the unique properties of supercritical CO 2 (scCO 2 ). Bio-based commercially available monomers have been polymerized and functional telechelic materials with targeted molecular weight prepared by end-capping the chains with molecules containing reactive moieties in a one-pot reaction. The use of scCO 2 as a reaction medium facilitates the effective use of Candida antarctica Lipase B (CaLB) as a catalyst at a temperature as low as 35°C, hence avoiding side reactions, maintaining the end-capper functionality and preserving the enzyme activity. The functionalized polymer products have been characterized by 1 H nuclear magnetic resonance spectroscopy, matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry, gel permeation chromatography and differential scanning calorimetry in order to carefully assess their structural and thermal properties. We demonstrate that telechelic materials can be produced enzymatically at mild temperatures, in a solvent-free system and using renewably sourced monomers without pre-modification, by exploiting the unique properties of scCO 2 . The macromolecules we prepare are ideal green precursors that can be further reacted to prepare useful bio-derived films and coatings.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2015.0073