Advances in real–time flood forecasting

This paper discusses the modelling of rainfall-flow (rainfall-run-off) and flow-routeing processes in river systems within the context of real-time flood forecasting. It is argued that deterministic, reductionist (or 'bottom-up') models are inappropriate for real-time forecasting because o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2002-07, Vol.360 (1796), p.1433-1450
1. Verfasser: Young, Peter C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses the modelling of rainfall-flow (rainfall-run-off) and flow-routeing processes in river systems within the context of real-time flood forecasting. It is argued that deterministic, reductionist (or 'bottom-up') models are inappropriate for real-time forecasting because of the inherent uncertainty that characterizes river-catchment dynamics and the problems of model over-parametrization. The advantages of alternative, efficiently parametrized data-based mechanistic models, identified and estimated using statistical methods, are discussed. It is shown that such models are in an ideal form for incorporation in a real-time, adaptive forecasting system based on recursive state-space estimation (an adaptive version of the stochastic Kalman filter algorithm). An illustrative example, based on the analysis of a limited set of hourly rainfall-flow data from the River Hodder in northwest England, demonstrates the utility of this methodology in difficult circumstances and illustrates the advantages of incorporating real-time state and parameter adaption.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2002.1008