Change in maternal environment induced by cross-fostering alters genetic and epigenetic effects on complex traits in mice

The interaction between maternally provided environment and offspring genotype is a major determinant of offspring development and fitness in many organisms. Recent research has demonstrated that not only genetic effects, but also epigenetic effects may be subject to modifications by the maternal en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2009-08, Vol.276 (1669), p.2949-2954
Hauptverfasser: Hager, Reinmar, Cheverud, James M., Wolf, Jason B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interaction between maternally provided environment and offspring genotype is a major determinant of offspring development and fitness in many organisms. Recent research has demonstrated that not only genetic effects, but also epigenetic effects may be subject to modifications by the maternal environment. Genomic imprinting resulting in parent-of-origin-dependent gene expression is among the best studied of epigenetic effects. However, very little is known about the degree to which genomic imprinting effects can be modulated by the maternally provided environment, which has important implications for phenotypic plasticity. In this study, we investigated this unresolved question using a cross-fostering design in which mouse pups were nursed by either their own or an unrelated mother. We scanned the entire genome to search for quantitative trait loci whose effects depend on cross-fostering and detected 10 of such loci. Of the 10 loci, 4 showed imprinting by cross-foster interactions. In most cases, the interaction effect was due to the presence of an effect in either cross-fostered or non-cross-fostered animals. Our results demonstrate that genomic imprinting effects may often be modified by the maternal environment and that such interactions can impact key fitness-related traits suggesting a greater plasticity of genomic imprinting than previously assumed.
ISSN:0962-8452
1471-2954
DOI:10.1098/rspb.2009.0515