Steklov eigenvalues of nearly hyperspherical domains

We consider Steklov eigenvalues of nearly hyperspherical domains in R d + 1 with d ≥ 3 . In previous work, treating such domains as perturbations of the ball, we proved that the Steklov eigenvalues are analytic functions of the domain perturbation parameter. Here, we compute the first-order term of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2024-04, Vol.480 (2287)
Hauptverfasser: Han Tan, Chee, Viator, Robert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider Steklov eigenvalues of nearly hyperspherical domains in R d + 1 with d ≥ 3 . In previous work, treating such domains as perturbations of the ball, we proved that the Steklov eigenvalues are analytic functions of the domain perturbation parameter. Here, we compute the first-order term of the asymptotic expansion and show that the first-order perturbations are eigenvalues of a Hermitian matrix, whose entries can be written explicitly in terms of Pochhammer’s and Wigner 3 j -symbols. We analyse the asymptotic expansion and show the following isoperimetric results among domains with fixed volume: (i) for an infinite subset of Steklov eigenvalues, the ball is not optimal and (ii) for a different infinite subset of Steklov eigenvalues, the ball is a stationary point.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2023.0734