Cycle index polynomials and generalized quantum separability tests

The mixedness of one share of a pure bipartite state determines whether the overall state is a separable, unentangled one. Here we consider quantum computational tests of mixedness, and we derive an exact expression of the acceptance probability of such tests as the number of copies of the state bec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2023-06, Vol.479 (2274)
Hauptverfasser: Bradshaw, Zachary P., LaBorde, Margarite L., Wilde, Mark M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2274
container_start_page
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 479
creator Bradshaw, Zachary P.
LaBorde, Margarite L.
Wilde, Mark M.
description The mixedness of one share of a pure bipartite state determines whether the overall state is a separable, unentangled one. Here we consider quantum computational tests of mixedness, and we derive an exact expression of the acceptance probability of such tests as the number of copies of the state becomes larger. We prove that the analytical form of this expression is given by the cycle index polynomial of the symmetric group S k , which is itself related to the Bell polynomials. After doing so, we derive a family of quantum separability tests, each of which is generated by a finite group; for all such algorithms, we show that the acceptance probability is determined by the cycle index polynomial of the group. Finally, we produce and analyse explicit circuit constructions for these tests, showing that the tests corresponding to the symmetric and cyclic groups can be executed with O ( k 2 ) and O ( k log ⁡ ( k ) ) controlled-SWAP gates, respectively, where k is the number of copies of the state being tested.
doi_str_mv 10.1098/rspa.2022.0733
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_2022_0733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1098_rspa_2022_0733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-5fb47158c4dabf488e45fb239783a41a441262b9ce46d06e47124eca90c423193</originalsourceid><addsrcrecordid>eNotkEtLxEAQhAdRcF29ep4_kDiPTjJz1KCusOBFz6Ez6chIXs5kwfjrTdBTFUVV03yM3UqRSmHNXYgTpkoolYpC6zO2k1DIRFnIz1evc0gyoeQlu4rxUwhhM1Ps2EO5uI64Hxr65tPYLcPYe-wix6HhHzRQwM7_UMO_TjjMp55HmjBg7Ts_L3ymOMdrdtGuC7r51z17f3p8Kw_J8fX5pbw_Jk4bMydZW6__ZMZBg3ULxhCskdK2MBpBIoBUuaqtI8gbkdNaVkAOrXCgtLR6z9K_uy6MMQZqqyn4HsNSSVFtBKqNQLURqDYC-hfIB0_9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cycle index polynomials and generalized quantum separability tests</title><source>Alma/SFX Local Collection</source><creator>Bradshaw, Zachary P. ; LaBorde, Margarite L. ; Wilde, Mark M.</creator><creatorcontrib>Bradshaw, Zachary P. ; LaBorde, Margarite L. ; Wilde, Mark M.</creatorcontrib><description>The mixedness of one share of a pure bipartite state determines whether the overall state is a separable, unentangled one. Here we consider quantum computational tests of mixedness, and we derive an exact expression of the acceptance probability of such tests as the number of copies of the state becomes larger. We prove that the analytical form of this expression is given by the cycle index polynomial of the symmetric group S k , which is itself related to the Bell polynomials. After doing so, we derive a family of quantum separability tests, each of which is generated by a finite group; for all such algorithms, we show that the acceptance probability is determined by the cycle index polynomial of the group. Finally, we produce and analyse explicit circuit constructions for these tests, showing that the tests corresponding to the symmetric and cyclic groups can be executed with O ( k 2 ) and O ( k log ⁡ ( k ) ) controlled-SWAP gates, respectively, where k is the number of copies of the state being tested.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2022.0733</identifier><language>eng</language><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2023-06, Vol.479 (2274)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-5fb47158c4dabf488e45fb239783a41a441262b9ce46d06e47124eca90c423193</citedby><cites>FETCH-LOGICAL-c388t-5fb47158c4dabf488e45fb239783a41a441262b9ce46d06e47124eca90c423193</cites><orcidid>0000-0002-3591-7594 ; 0000-0001-9754-1468 ; 0000-0002-3916-4462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bradshaw, Zachary P.</creatorcontrib><creatorcontrib>LaBorde, Margarite L.</creatorcontrib><creatorcontrib>Wilde, Mark M.</creatorcontrib><title>Cycle index polynomials and generalized quantum separability tests</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>The mixedness of one share of a pure bipartite state determines whether the overall state is a separable, unentangled one. Here we consider quantum computational tests of mixedness, and we derive an exact expression of the acceptance probability of such tests as the number of copies of the state becomes larger. We prove that the analytical form of this expression is given by the cycle index polynomial of the symmetric group S k , which is itself related to the Bell polynomials. After doing so, we derive a family of quantum separability tests, each of which is generated by a finite group; for all such algorithms, we show that the acceptance probability is determined by the cycle index polynomial of the group. Finally, we produce and analyse explicit circuit constructions for these tests, showing that the tests corresponding to the symmetric and cyclic groups can be executed with O ( k 2 ) and O ( k log ⁡ ( k ) ) controlled-SWAP gates, respectively, where k is the number of copies of the state being tested.</description><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEtLxEAQhAdRcF29ep4_kDiPTjJz1KCusOBFz6Ez6chIXs5kwfjrTdBTFUVV03yM3UqRSmHNXYgTpkoolYpC6zO2k1DIRFnIz1evc0gyoeQlu4rxUwhhM1Ps2EO5uI64Hxr65tPYLcPYe-wix6HhHzRQwM7_UMO_TjjMp55HmjBg7Ts_L3ymOMdrdtGuC7r51z17f3p8Kw_J8fX5pbw_Jk4bMydZW6__ZMZBg3ULxhCskdK2MBpBIoBUuaqtI8gbkdNaVkAOrXCgtLR6z9K_uy6MMQZqqyn4HsNSSVFtBKqNQLURqDYC-hfIB0_9</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Bradshaw, Zachary P.</creator><creator>LaBorde, Margarite L.</creator><creator>Wilde, Mark M.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3591-7594</orcidid><orcidid>https://orcid.org/0000-0001-9754-1468</orcidid><orcidid>https://orcid.org/0000-0002-3916-4462</orcidid></search><sort><creationdate>20230628</creationdate><title>Cycle index polynomials and generalized quantum separability tests</title><author>Bradshaw, Zachary P. ; LaBorde, Margarite L. ; Wilde, Mark M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-5fb47158c4dabf488e45fb239783a41a441262b9ce46d06e47124eca90c423193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradshaw, Zachary P.</creatorcontrib><creatorcontrib>LaBorde, Margarite L.</creatorcontrib><creatorcontrib>Wilde, Mark M.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradshaw, Zachary P.</au><au>LaBorde, Margarite L.</au><au>Wilde, Mark M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cycle index polynomials and generalized quantum separability tests</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2023-06-28</date><risdate>2023</risdate><volume>479</volume><issue>2274</issue><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>The mixedness of one share of a pure bipartite state determines whether the overall state is a separable, unentangled one. Here we consider quantum computational tests of mixedness, and we derive an exact expression of the acceptance probability of such tests as the number of copies of the state becomes larger. We prove that the analytical form of this expression is given by the cycle index polynomial of the symmetric group S k , which is itself related to the Bell polynomials. After doing so, we derive a family of quantum separability tests, each of which is generated by a finite group; for all such algorithms, we show that the acceptance probability is determined by the cycle index polynomial of the group. Finally, we produce and analyse explicit circuit constructions for these tests, showing that the tests corresponding to the symmetric and cyclic groups can be executed with O ( k 2 ) and O ( k log ⁡ ( k ) ) controlled-SWAP gates, respectively, where k is the number of copies of the state being tested.</abstract><doi>10.1098/rspa.2022.0733</doi><orcidid>https://orcid.org/0000-0002-3591-7594</orcidid><orcidid>https://orcid.org/0000-0001-9754-1468</orcidid><orcidid>https://orcid.org/0000-0002-3916-4462</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2023-06, Vol.479 (2274)
issn 1364-5021
1471-2946
language eng
recordid cdi_crossref_primary_10_1098_rspa_2022_0733
source Alma/SFX Local Collection
title Cycle index polynomials and generalized quantum separability tests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cycle%20index%20polynomials%20and%20generalized%20quantum%20separability%20tests&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Bradshaw,%20Zachary%20P.&rft.date=2023-06-28&rft.volume=479&rft.issue=2274&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2022.0733&rft_dat=%3Ccrossref%3E10_1098_rspa_2022_0733%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true