Cycle index polynomials and generalized quantum separability tests
The mixedness of one share of a pure bipartite state determines whether the overall state is a separable, unentangled one. Here we consider quantum computational tests of mixedness, and we derive an exact expression of the acceptance probability of such tests as the number of copies of the state bec...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2023-06, Vol.479 (2274) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mixedness of one share of a pure bipartite state determines whether the overall state is a separable, unentangled one. Here we consider quantum computational tests of mixedness, and we derive an exact expression of the acceptance probability of such tests as the number of copies of the state becomes larger. We prove that the analytical form of this expression is given by the cycle index polynomial of the symmetric group
S
k
, which is itself related to the Bell polynomials. After doing so, we derive a family of quantum separability tests, each of which is generated by a finite group; for all such algorithms, we show that the acceptance probability is determined by the cycle index polynomial of the group. Finally, we produce and analyse explicit circuit constructions for these tests, showing that the tests corresponding to the symmetric and cyclic groups can be executed with
O
(
k
2
)
and
O
(
k
log
(
k
)
)
controlled-SWAP gates, respectively, where
k
is the number of copies of the state being tested. |
---|---|
ISSN: | 1364-5021 1471-2946 |
DOI: | 10.1098/rspa.2022.0733 |