Goal-directed graph construction using reinforcement learning

Graphs can be used to represent and reason about systems and a variety of metrics have been devised to quantify their global characteristics. However, little is currently known about how to construct a graph or improve an existing one given a target objective. In this work, we formulate the construc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2021-10, Vol.477 (2254), p.1-18
Hauptverfasser: Darvariu, Victor-Alexandru, Hailes, Stephen, Musolesi, Mirco
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphs can be used to represent and reason about systems and a variety of metrics have been devised to quantify their global characteristics. However, little is currently known about how to construct a graph or improve an existing one given a target objective. In this work, we formulate the construction of a graph as a decision-making process in which a central agent creates topologies by trial and error and receives rewards proportional to the value of the target objective. By means of this conceptual framework, we propose an algorithm based on reinforcement learning and graph neural networks to learn graph construction and improvement strategies. Our core case study focuses on robustness to failures and attacks, a property relevant for the infrastructure and communication networks that power modern society. Experiments on synthetic and real-world graphs show that this approach can outperform existing methods while being cheaper to evaluate. It also allows generalization to out-of-sample graphs, as well as to larger out-of-distribution graphs in some cases. The approach is applicable to the optimization of other global structural properties of graphs.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2021.0168