Isothermic surfaces in sphere geometries as Moutard nets

We give an elaborated treatment of discrete isothermic surfaces and their analogues in different geometries (projective, Möbius, Laguerre and Lie). We find the core of the theory to be a novel characterization of discrete isothermic nets as Moutard nets. The latter are characterized by the existence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2007-12, Vol.463 (2088), p.3171-3193
Hauptverfasser: Bobenko, Alexander I, Suris, Yuri B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give an elaborated treatment of discrete isothermic surfaces and their analogues in different geometries (projective, Möbius, Laguerre and Lie). We find the core of the theory to be a novel characterization of discrete isothermic nets as Moutard nets. The latter are characterized by the existence of representatives in the space of homogeneous coordinates satisfying the discrete Moutard equation. Moutard nets admit also a projective geometric characterization as nets with planar faces with a five-point property: a vertex and its four diagonal neighbours span a three-dimensional space. Restricting the projective theory to quadrics, we obtain Moutard nets in sphere geometries. In particular, Moutard nets in Möbius geometry are shown to coincide with discrete isothermic nets. The five-point property, in this particular case, states that a vertex and its four diagonal neighbours lie on a common sphere, which is a novel characterization of discrete isothermic surfaces. Discrete Laguerre isothermic surfaces are defined through the corresponding five-plane property, which requires that a plane and its four diagonal neighbours share a common touching sphere. Equivalently, Laguerre isothermic surfaces are characterized by having an isothermic Gauss map. S-isothermic surfaces as an instance of Moutard nets in Lie geometry are also discussed.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2007.1902