Level Clustering in the Regular Spectrum
In the regular spectrum of an f-dimensional system each energy level can be labelled with f quantum numbers originating in f constants of the classical motion. Levels with very different quantum numbers can have similar energies. We study the classical limit of the distribution P(S) of spacings betw...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1977-09, Vol.356 (1686), p.375-394 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the regular spectrum of an f-dimensional system each energy level can be labelled with f quantum numbers originating in f constants of the classical motion. Levels with very different quantum numbers can have similar energies. We study the classical limit of the distribution P(S) of spacings between adjacent levels, using a scaling transformation to remove the irrelevant effects of the varying local mean level density. For generic regular systems P(S) = e-s , characteristic of a Poisson process with levels distributed at random. But for systems of harmonic oscillators, which possess the non-generic property that the ‘energy contours’ in action space are flat, P(S) does not exist if the oscillator frequencies are commensurable, and is peaked about a non-zero value of S if the frequencies are incommensurable, indicating some regularity in the level distribution; the precise form of P(S) depends on the arithmetic nature of the irrational frequency ratios. Numerical experiments on simple two-dimensional systems support these theoretical conclusions. |
---|---|
ISSN: | 1364-5021 0080-4630 1471-2946 2053-9169 |
DOI: | 10.1098/rspa.1977.0140 |