A Rapid Method for Determining Diffusion Constants in Solution

A method has been rediscovered, and developed in theory and practice, for optical observation of the earliest stages of diffusion across an initially sharp boundary between a dilute solution and a solvent. It enables the diffusion constant of a monodisperse solute to be measured about fifty times as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1948-02, Vol.192 (1030), p.382-402
Hauptverfasser: Coulson, Charles Alfred, Cox, J. T., Ogston, Alexander George, Philpot, J. St L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method has been rediscovered, and developed in theory and practice, for optical observation of the earliest stages of diffusion across an initially sharp boundary between a dilute solution and a solvent. It enables the diffusion constant of a monodisperse solute to be measured about fifty times as quickly as by other methods, at lower concentration and possibly with greater accuracy; it should therefore be particularly valuable for the study of high molecular substances. The method is based on the interference pattern which is formed when monochromatic light from a horizontal slit is focused after passing through a cell where diffusion is occurring. The pattern, a set of horizontal bands, contracts towards the optic axis as diffusion proceeds, at a rate from which the diffusion constant can be calculated. By counting the bands in the pattern the refractive increment of the solute can be determined. The sharp initial boundary is obtained by flowing the solution and solvent out through a common narrow horizontal slit. The construction, calibration, and use of the apparatus are described.
ISSN:1364-5021
0080-4630
1471-2946
2053-9169
DOI:10.1098/rspa.1948.0015