In vivo impact testing on a lengthened femur with external fixation: a future option for the non-invasive monitoring of fracture healing?

Non-invasive methods for assessing fracture healing are crucial for biomedical engineers. An approach based on mechanical vibrations was tried out in the 1990s, but was soon abandoned due to insufficiently advanced technologies. The same approach is re-proposed in the present study in order to monit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2018-05, Vol.15 (142), p.20180068-20180068
Hauptverfasser: Mattei, Lorenza, Di Puccio, Francesca, Marchetti, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-invasive methods for assessing fracture healing are crucial for biomedical engineers. An approach based on mechanical vibrations was tried out in the 1990s, but was soon abandoned due to insufficiently advanced technologies. The same approach is re-proposed in the present study in order to monitor the healing process of a lengthened femur with an external fixator. The pins screwed into the bone were exploited for the impact testing (IT) to excite the bone and capture its response. Transmission through the soft tissues was thus prevented, and the quality of the signals was improved. Impact tests were performed every three to four weeks for five months. Unfortunately, after seven weeks, some pins were removed due to infection, and thus, the system was modified. Two different configurations were considered: before and after pin removal. An additional configuration was examined in the last two sessions, when the fixator body was removed, while four pins were left in the femur. The evolution of the frequency response function and of the resonant frequencies of the system were analysed for the duration of the monitoring period. The IT results were compared to the indications provided by X-ray images. During the evolution of the callus from the soft phase to the woven bone, the resonant frequencies of the system were found to increase by approximately 2–3% per week. The largest increase (approx. 22%) was observed for the first resonant frequency. After formation of the woven bone, the vibratory response remained almost the same, suggesting that the healing assessment could be related to the relative variation in the resonant frequencies. The results presented support the application of the IT approach for fracture healing assessment.
ISSN:1742-5689
1742-5662
DOI:10.1098/rsif.2018.0068