Chrysin Ameliorates Sepsis-Induced Cardiac Dysfunction Through Upregulating Nfr2/Heme Oxygenase 1 Pathway

The incidence of myocardial dysfunction caused by sepsis is high, and the mortality of patients with sepsis can be significantly increased. During sepsis, oxidative stress and inflammation can lead to severe organ dysfunction. Flavone chrysin is one of the indispensable biological active ingredients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cardiovascular pharmacology 2021-04, Vol.77 (4), p.491-500
Hauptverfasser: Xingyue, Li, Shuang, Li, Qiang, Wang, Jinjuan, Fu, Yongjian, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The incidence of myocardial dysfunction caused by sepsis is high, and the mortality of patients with sepsis can be significantly increased. During sepsis, oxidative stress and inflammation can lead to severe organ dysfunction. Flavone chrysin is one of the indispensable biological active ingredients for different fruits and vegetables and has antioxidant and anti-inflammatory properties. However, it is not clear whether chrysin is an effective treatment for heart dysfunction caused by sepsis. We found that it had protective effects against the harmful effects caused by LPS, manifested in improved survival, normalized cardiac function, improved partial pathological scores of myocardial tissue, and remission of apoptosis, as well as reduced oxidative stress and inflammation. Mechanism studies have found that chrysin is an important antioxidant protein, a key regulator of heme oxygenase 1 (HO-1). We found that HO-1 levels were increased after LPS intervention, and chrysin further increased HO-1 levels, along with the addition of Nrf2, a regulator of antioxidant proteins. Pretreatment with PD98059, an extracellular signal-regulated kinase-specific inhibitor, blocked chrysin-mediated phosphorylation of Nrf2 and the nuclear translocation of Nrf2. The protective effect of chrysin on sepsis-induced cardiac dysfunction was blocked by ZnPP, which is a HO-1 blocker. Chrysin increased antioxidant activity and reduced markers of oxidative stress (SOD and MDA) and inflammation (MPO and IL-1 beta), all of which were blocked by ZnPP. This indicates that HO-1 is the upstream molecule regulating the protective effect of chrysin. Thus, by upregulation of HO-1, chrysin protects against LPS-induced cardiac dysfunction and inflammation by inhibiting oxidative stress.
ISSN:0160-2446
1533-4023
DOI:10.1097/FJC.0000000000000989